## PCSRF Workshop - December 2001

Application of the Common Criteria
in Support of
Process Control Systems
Security Specification

Michael McEvilley
mam@decisive-analytics.com
703.414.5002

ECISIVE
ANALYTICS

## Overview

- Background Establishing a foundation
  - Understanding CC Concepts & Model

- Obtaining Workshop Objectives
  - Bounding the problem
    - Issues in Defining and Scoping the Target
  - Addressing Vulnerabilities
    - Policy, Threats, Countermeasures



## Importance of Fundamentals

- We solve the wrong problem
  - and wonder why solutions continue to fail
- We confuse concepts with the application of the concepts
  - and wonder why the process is so difficult



- Engineering
- Integration & Test
- Operation & Maintenance
- Retirement



Finer Granularity

- Concept Definition
- Requirements Articulation
- Design Development
- Implementation Representation
- Verification
- Operation
- Evolution
- Retirement



Common Criteria Focus

- Concept Definition
- Requirements Articulation
- Design Development
- Implementation Representation
- Verification
- Operation
- Evolution
- Retirement



Common Criteria Scope of Potential Impact

- Concept Definition
- Requirements Articulation
- Design Development
- Implementation Representation
- Verification
- Operation
- Evolution
- Retirement

Requirements are articulated through **Specification** 



## The Specification Umbrella

**Specifications** 

Design Implementation Verification Operation Evolution



# Importance of the Specification

- The specification
  - provides a means to communicate
  - establishes basis for 'truth' or 'correctness'
  - often serves as a translation medium
- The specification integrity cannot be compromised
  - any process, event, activity based upon a specification is only as good as the specification



## Forms of Specification

- Functional or Performance
- Safety
- Human Factors
- Security
- ConOps
- Policy



## Specification Distinction Difficulties

- Capability vs. Configuration
  - what "may" be done vs. what "is" being done
  - potential vs. realization
- Capability vs. Design
  - what it must do vs. how it must do it
- Physical vs. logical
  - how I "see" it vs. how I "describe" it



## Specification Correctness Concerns

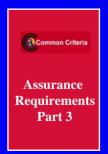
#### Stakeholder View

- Getting the right requirements
  - sufficiency of the solution to meet constraints of the business or mission case
    - budget
    - time
    - resources
    - technology

## Evaluator & Stakeholder View

- Getting the requirements right
  - in compliance with standards
  - complete, consistent,coherent
  - organization, traceability
  - no redundancy, no ambiguity




### What is the CC?



Part 1 - Introduction & General Model



Part 2 - Security Functional Requirements



Part 3 - Security Assurance Requirements



## What Is the CC?

"Common Criteria for Information Technology Security Evalution"

- Common Criteria
  - Meta-standard of criteria and constructs used to develop security specifications
    - Protection Profile (PP)
    - Security Target (ST)
  - ... in support of the evaluation of products and systems



### Common Criteria Focus

... in support of the evaluation of products and systems

- Focus of CC is evaluation
  - Part 3 defines specific requirements
    - Content and presentation of evaluation evidence
    - Verification tasks for the evaluator
  - Part 2 has no such [intentional] focus
    - Applicable in any context [supposedly]



## The Common Criteria (CC)

"Common Criteria for Development of Information Technology Security Specifications"

- The CC is a meta standard that defines
  - a requirements specification framework that
    - characterizes solutions (PP)
    - defines "as built" or "as-to-be-built" solutions (ST)
  - a catalog of criteria used to populate the framework
    - Part 2 Security Functional Requirements
      - Applicable to any "problem space"
    - Part 3 Security Assurance Requirements
      - Applicable to any "verification space"



### Requirement Specification Framework

Protection Profile & Security Target

- Context information
  - Introduction/TOE Description)
  - Application domain information
    - Secure usage assumptions
    - Organizational security policies
    - Threats
- Security Objectives
- Security Requirements
  - Functional, Assurance
- Rationale

Each as necessary to define and substantiate a security case

## The Common Criteria (CC)

Functional and Assurance Criteria

- The CC is a catalog of criteria
  - Functional Requirements
    - used to specify what the system is to do
  - Assurance Requirements
    - used to specify what is done to verify that the system does exactly what it is supposed to do, and nothing else



## **CC Functional Criteria**

- Specify the security properties of IT products and systems that address
  - Unauthorized disclosure (confidentiality, privacy)
  - Unauthorized modification (integrity)
  - Loss of use (availability)
  - Verification of identity (Identification and Authentication (I&A))
  - Accountability for operations (audit, non-repudiation)
- Provides a basis for comparison of different design or implementation solutions

## **CC** Assurance Criteria

- Specify the properties for verification of development life-cycle activities
- Specify the properties for verification of a continuity of knowledge as systems evolve
- Provides a basis for comparison of the results of independent evaluations

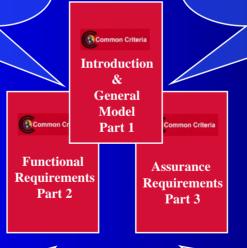


## Users of the CC

- Developers of security specifications
  - Security, systems engineers
- Implementers of security specifications
  - Product and system developers, integrators
- Verifiers of the implementation of a security specification
  - Certifiers, evaluators, auditors



## Application of the CC


Process Independence
CC constructs may be
integrated with existing
system life-cycle processes

#### Technology Independence

CC requirements are independent of technology and implementation – hardware, software, firmware

## Functionality Independence

CC criteria is independent of requirements specific to any business or mission case



#### Goal Independence

Originally developed to support formal evaluation Being applied in new and diverse contexts

# The CC Requirements Specification Framework

Specification Philosophy
Concepts & Constructs



A Requirements Engineering Approach

- Specification framework provides for
  - Specification of a security problem
  - Specification of the security solution
    - implementation
    - verification
- Information captured in various 'constructs'
  - each presents a 'view' of the problem or solution
- Concepts relate information
  - within a construct or between constructs
  - based on proven engineering practices
- Has parallel with safety-critical system engineering specification and verification



Construct Concepts

- Security Environment Construct
  - Defines and characterizes the security problem
    - assumptions about the operational environment
    - threats that must be countered
    - policys that must be enforced
- Security Objectives Construct
  - Characterizes the intended approach for
    - ensuring that assumptions are realized
    - eliminating, minimizing or monitoring defined threats
    - enforcing stated policy



Construct Concepts

- Security Requirements Construct
  - Defines the functional or assurance requirements that implement the defined objectives
    - Functional requirements implement the solution
    - Assurance requirements verify the implementation



Construct Concepts

#### Rationale Construct

- Objectives
  - arguement that objectives provide 100% coverage and are suitable to meet the security environment issues
- Requirements
  - arguement that requirements provide 100% coverage and are suitable to meet the objectives
- TOE Summary Specification
  - argument that security functions and assurance measures provide 100% coverage and are suitable to meet the requirements



Construct Concepts



A specification framework with checks and balances to provide end-to-end correctness



## **CC** Concept Definitions

- Target of Evaluation (TOE)
  - An IT product or system and its associated administrator and user guidance documentation that is the subject of an evaluation
- TOE Security Functions (TSF)
  - The parts of the TOE implementation that are relied upon for the correct enforcement of the TOE Security Policy (TSP)



## **CC** Concept Definitions

- TOE Security Policy (TSP)
  - Set of rules that define how assets are managed, protected and distributed by the TOE
- TSF Interfaces (TSFI)
  - Interfaces to the TOE security functions
    - internal to the TOE
    - between the TOE and users and trusted products



## **CC** Concept Definitions

#### IT Environment

- IT products or systems that are not part of the TOE but with which the TOE shares a trusted relationship
  - Trust relationship mutual authentication of communication participants and secure methods to transfer information

#### Non-IT Environment

 The physical aspects of the world in which the TOE is placed and operates



# Illustration TOE, TSF, TSFI

**TOE Non-Security Functions TSF** Interfaces (TSFI) **TOE Security Functions** (TSF)

Target of Evaluation (TOE)



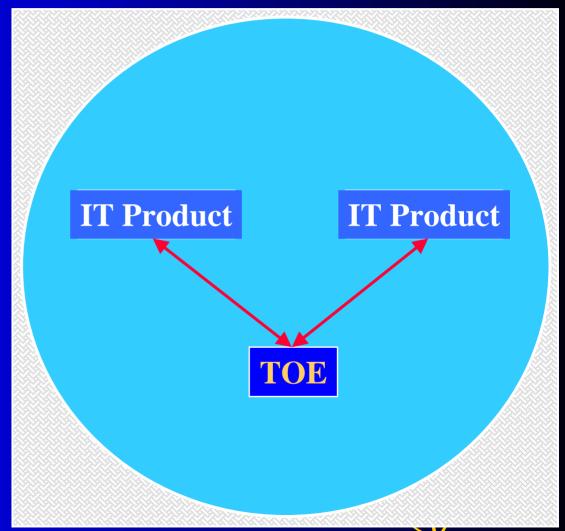
## Illustration Non-IT Environment

Non-IT
environment
consists of the
physical aspects
of the world in
which the TOE is
placed and
operates.

**Non-IT Environment** 

TOE



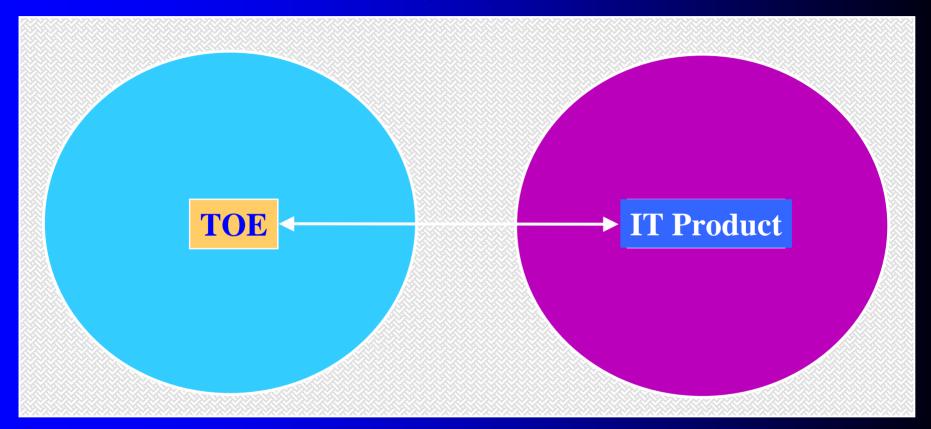

## IT Environment Concept

The general environment is enclosed inside the square, i.e., the 'world'

 TOE Environment is enclosed inside the circle

Non-IT environment implemented by the physical world

IT Environment implemented by IT capabilities






## IT Environment Concept

ECISIVE

Web Server (TOE) - Certificate Server (IT Environment)



- Non-IT environment of the Web Server (TOE)
- Non-IT environment of the Certificate Server (IT environment of the TOE)

## Requirements Specification Framework Construct

The Protection Profile



#### What's in a PP?

- Protection Profiles are Security Specifications that include, in addition to Functional and Assurance Requirements, the following information ...
  - Context information
    - Introduction/TOE Description)
    - Environment information
      - Assumptions, Threats, Policies
  - Statement of goals (Objectives)
  - Rationale



#### **Protection Profiles**

• Answers the question:

"What do I need in a security solution?"

- Characterizes the solutions space for a class of components, products or systems
- Protection Profile authors:
  - anyone who wants to state IT security needs (e.g., commercial consumer, consumer groups)
  - anyone who supplies products which support IT security needs
  - anyone ...



### Purpose of the PP

- To provide a means for statement of security requirement needs
  - for acquisition
  - for development
  - for certification & accreditation
  - for any unique security documentation requirement
- PPs establish ...
  - a basis for ST development
  - a common reference for ST comparison and assessment



#### **Protection Profile Granularity**

Requirement detail granularity is the discretion of the PP author

Abstract
High Level
Conceptual
PP

Capability
or
Technology
Focused
PP

Increasing detail & constraints - less options & flexibility



#### Flexibility in the use of PPs

- The CC defines a framework that establishes
  - correctness of a PP
  - correctness of a ST
  - the optional relationship between a PP and a ST
- The CC encourages that the PP Introduction include a reference to related PPs
  - the CC does not define what the relationship is
- Creative use of the PP concept can improve specification and acquisition processes



## CC Philosophy For PP Content

- Threats/Policies are stated
  - based upon identified vulnerabilities
- Security Objectives stated
  - to counter the threats and enforce policies
- Explicit measures are adopted that
  - eliminate vulnerabilities
  - minimize vulnerabilities
  - monitor vulnerabilities



# The CC and System Specification

Issues & Considerations for the PCSRF



## System Specification Issues

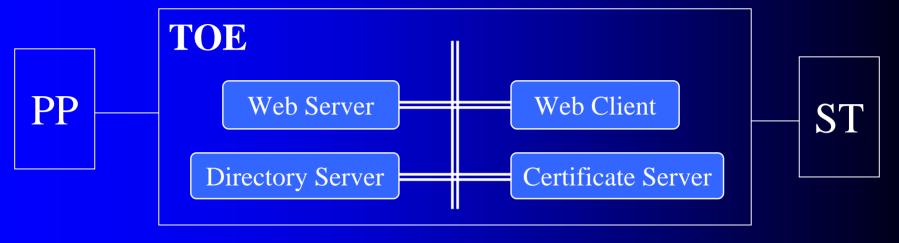
Scope

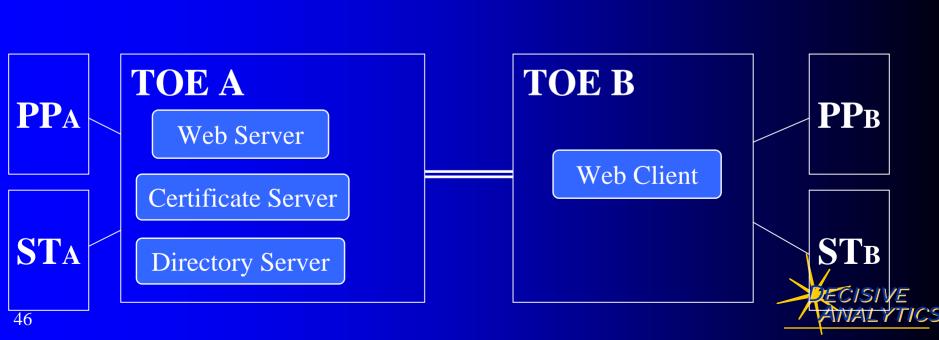
Interfaces

Composition

Decomposition

Trust Relationships





## Scope The Definition of the TOE

- Systems present unique scoping issues
  - technical
    - interfaces, scalability, composition/decomposition
  - management
    - schedule, budget, resources
- Once defined, the system is treated as a single component TOE
  - implications must be fully understood



#### Scope Illustration





### Composing/Decomposing

Correctness of the Specification

#### Decomposition

- how to decompose a system concept into implementation and specification components
  - physical and logical

#### Composition

- how to compose a system using pre-existing components and component specifications
  - physical and logical



## Composition and Decomposition Illustration

Composition

System Concept
Specification



Component 1
Spec

Component 2
Spec

Component 3
Spec

Component n
Spec



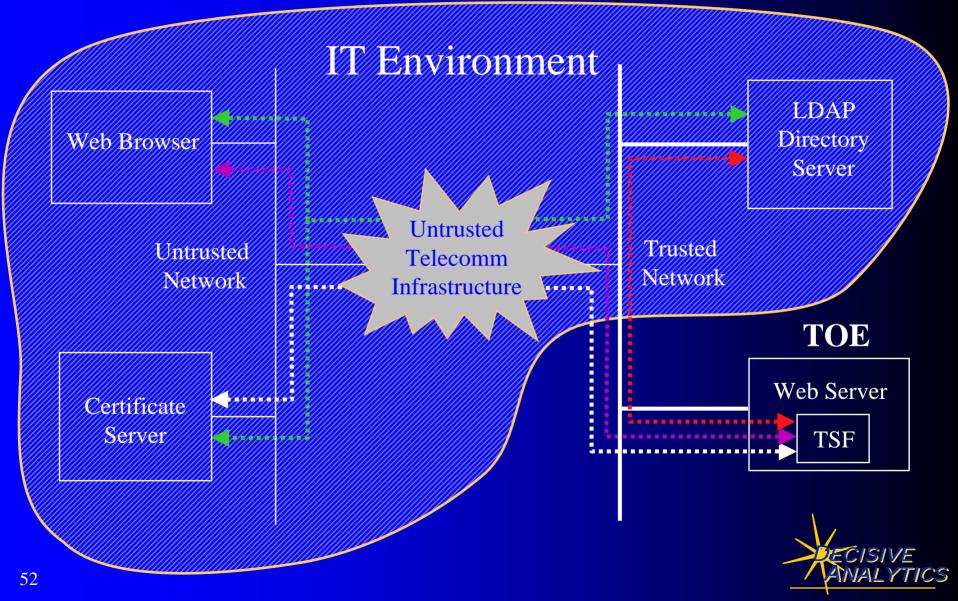
#### Interfaces

- Rules for interaction between components
- Typically specified independent of functionality
  - message interface
  - programming interface (API)
  - services interface
  - plug-in interface
- May be internal or external



#### Trust Relationships

- Rules for secure interaction between components
  - special form of interface
  - subset of interface specification
- From the CC perspective
  - internal to the TOE
  - between the TOE and a remote trusted component
    - IT environment




## Establishing Trust Relationships

- Trusted channels provide mechanism for trust relationships between components
  - authentication of endpoints
  - secure communication protocol
    - integrity, confidentiality, recovery
- Trusted channels provide mechanism for trust relationship between user and system
  - built on trusted channels



### Trust Relationship Illustration



#### IT Environment

Specification of Trust Relationship with Remote Systems

- IT Environment is comprised of
  - IT components that are not part of the TOE but with which the TOE shares a trust relationship
- PP/ST has section dedicated to specification of IT Environment interfaces



# System Specification Using Single Protection Profile

- Practicality dependent upon size and complexity of the TOE
- May present configuration management problems
- Organization of information important
  - by TOE component
  - by criteria
- Useful for either composition or decomposition approach

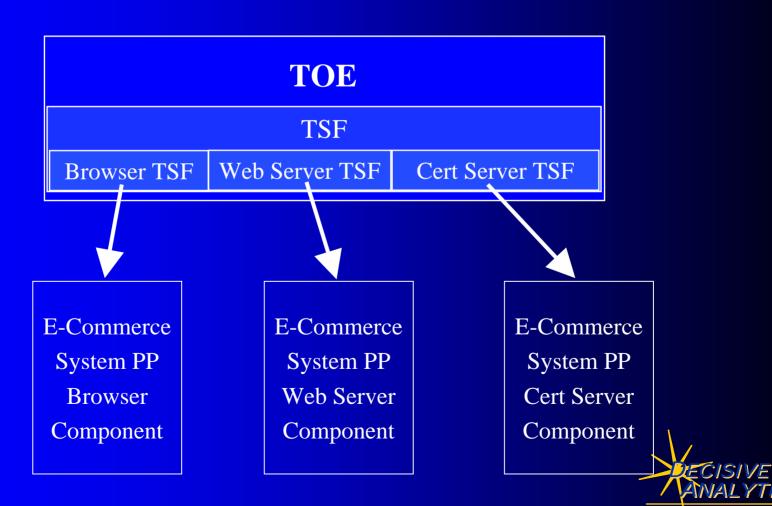
## System Specification Using Single Protection Profile

E-Commerce System PP

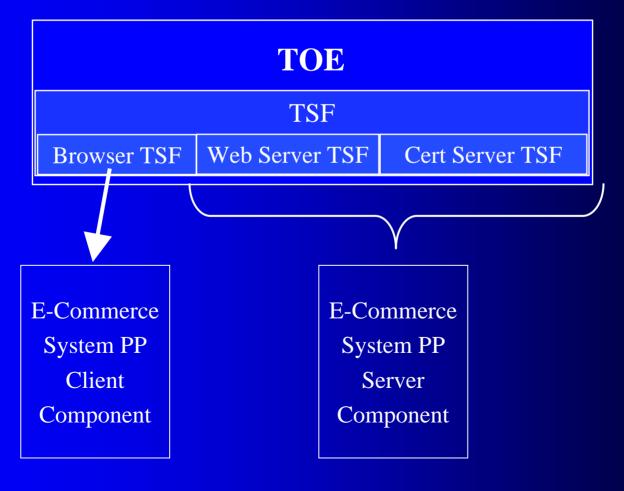
TOE

TSF

Browser TSF | Web Server TSF | Cert Server TSF




# System Specification Using Multiple Protection Profiles


- May serve either purpose
  - Decomposes system into component parts
  - Compose a system from existing component parts
- Distributes workload and may map better to life-cycle processes and constraints
- Adds complexity to configuration management
  - Coordination of distinct parts
- Organization is typically by component or subsystem
- More appropriate for a composition approach



# System Specification Using Multiple Protection Profiles

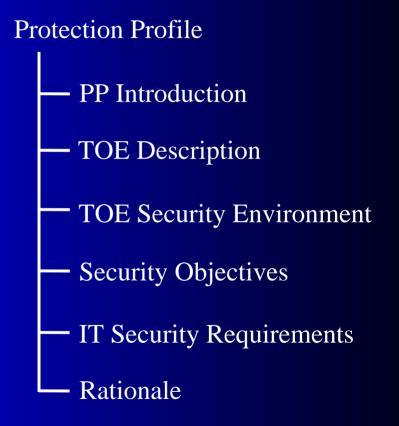


# System Specification Using Multiple Protection Profiles





## Multiple PP Approach Issues


- Each PP is a standalone document
  - necessary to meet APE criteria
- No central location for discussion of the TOE as a whole system
- Difficult to understand the logical relationships



### System Specification

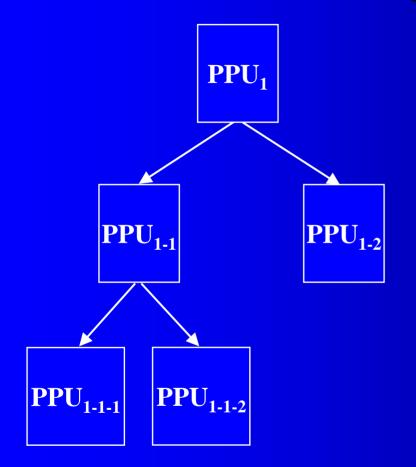
Concept of Intermediate PP Structures

- Intermediate PP structures provide a decomposition of the specification space
- Useful where implementation options vary based upon
  - technology
  - environment
  - operational practices
  - ... and, any solution must be compliant with defined criteria
- Structure defined by variance in specification requirements
  - organized as a tree structure





### System Specification


Defining Intermediate PP Structures

- Root of tree provides mandatory information
  - TOE description
  - Security environment
    - guidance assumptions, policy mandates, threat characterization
  - Security objectives and requirements
    - for mandatory implementation approach
  - Rationale
- Root descendants elaborate or append to material at parent nodes
- Guidance is provided on application and use of PP structures



#### System Specification

Concept for Using PP-Like Structures



- Separate PP construct into series of specification units
- Establish relationship between units to address issues specific to the unit
- Generate a 'complete'PP by extracting units along a path of the tree



### The PP Development Process

In Preparation for Development of PCS Protection Profiles



#### Critical Issues

- Scope and bounding the problem
- Method of requirements articulation
- Vulnerabilities and the security environment
  - Assumptions
  - Mandatory Policy
  - Threats
- The Game Plan



### Scope and Bounding

• What is the TOE?

• What is the TOE environment?

• What is the IT Environment of the TOE?



### **Articulation of Requirements**

Single Protection Profile

Multiple Profiles

Profile-like constructs



# Vulnerabilities and the Security Environment



#### What is Assurance?

Dictionary Definition: conveys confidence

- Common Criteria Definition: grounds for confidence that an IT product or system meets its security objectives.
- Assurance measures
  - provide a basis for a security argument
  - do not add functionality to the TOE



#### **Basis for Assurance**

- Vulnerabilities that arise from
  - Requirements
    - Incorrect, insufficient, ineffective
  - Design and Implementation
    - Incorrect design decisions
    - Errors in implementation
  - Operational Controls
    - Inadaquate or overly complicated
    - Poorly documented



#### How Is Assurance Obtained?

- Verification and Validation (V&V)
  - by the developing organization
  - through an independent agent (IV&V)
- Verification
  - ensuring the implementation meets the stated requirements (TOE Evaluation)
- Validation
  - ensuring the requirements represent an acceptable description of the desired implementation



### **Dealing with Vulnerabilities**

- Vulnerabilities are the basis for both threat and policy statements
- Policy statements may also reflect business case rules
  - basis for policy often to prevent
    - going to jail
    - being sued



### Threats vs. Policy

- In CC model they are equivalent
  - achieve the same end result
- Practically
  - threats are more explicit, detailed and refined
    - drive a specific functional capability or assurance need
  - policies are more broad and generic in scope
    - establish boundaries within which subordinates may operate
- Assumptions bound the scope of threats and policy



Strategy and Process

#### Strategy

- What are the objectives to be met?
- How will the document be used?
- Who are the users of the developed documents?
- What information must be captured?

#### Process

- Define management, development, configuration control and approval participants
- Develop procedures



Managing PP/ST Development

- PP/ST development is an engineering activity
- Disciplined application of the CC is a necessity
  - flexibility
  - varying application contexts
  - addressing CC deficiencies
- Both technical and process efforts



Managing PP/ST Development

- Process defining the work
  - Development approach
  - Evaluation, vetting
  - Evolution
- Technical doing the work
  - Vulnerability assessment
  - Requirements analysis
  - Writing of PP/ST sections



Managing PP/ST Development

- Accurately state requirements
  - Scope and detail
  - Consistency and coherency
  - Precision and accuracy
  - Structure and organization
- Balance "what" and "how" in response to purpose
  - Requirements abstraction
  - Physical vs. logical views and perspectives

Supporting Design & Development

- PP/ST Specification framework provides excellent basis for documentation of information design and development information
  - security environment establishes basis for requirements
  - rationale substantiates effectiveness of requirements
  - assurance requirements guide effort to document design and verify correctness of implementation





#### Questions

Contact Information

Michael McEvilley

DECISIVE ANALYTICS

Corporation

mam@decisive-analytics.com 703.414.5002

www.commoncriteria.com

